Enforcing Privacy in Participatory Sensing Systems

Dimitrios Tsolovos
Inria & University of Versailles St. Quentin-en-Yvelines
dimitrios.tsolovos@inria.fr

Abstract
Mobile Participatory Sensing systems provide useful data gathered from mobile devices that would otherwise require expensive deployments of sensor networks. This type of data can identify participants and infer important private information. In this Ph.D. thesis, we investigate a decentralized approach assisted by Trusted Execution Environment enabled hardware to enforce the control of the participants on the usage of the collected personal data series.

CCS Concepts • Security and privacy → Privacy-preserving protocols; Distributed systems security;

Keywords privacy, mobile participatory sensing, trusted execution environments, distributed systems

1 Introduction
Mobile Participatory Sensing (MPS) systems collect spatio-temporal data and other sensor readings which can vary from environmental and health data, to any other type of data that mobile phones can collect. This data, typically, has the form of continuous time series and is sensitive since it can be used to identify participants and infer important information about their interests, location or medical conditions. MPS systems are distributed by nature and yet in most applications, participants must report the data they have collected to a server and thus “re-centralize” it. This approach assumes, by construction, that individuals do not question the honesty of the hosting company nor its capacity to defeat severe attacks, since centralization creates in essence a massive honeypot.

In recent studies, authors implement Privacy Enhancing Techniques (PETs) such as k-anonymity and differential privacy to protect user privacy. The main idea is that a trusted entity in the architecture, will be responsible for anonymizing user data. In the approaches of [2] and [10], the authors use a central server while in [8], the authors let the mobile phone service provider handle this. In [3], participants are called to exchange their measurements with each other before reporting them back to the server. This way, the link between them and their data is broken. This needs to be coupled with other PETs as the link can be re-established by analyzing a personal participant’s history and combining it with external knowledge. For a survey of recent studies in centralized MPS we refer the reader to [1]. Such centralized approaches fail to provide guarantees that user data will not be misused either intentionally, by negligence or in case of a successful attack against the server. Trusting third parties to provide confidentiality and integrity preserving computations is not a convincing solution.

2 Problem Statement
A privacy aware architecture for MPS systems should enforce that participants have control over their data, while enabling rich and secure computations over data from multiple participants. More specifically, it should ensure confidentiality of user data and of the intermediate results of the computations. Additionally, it should provide integrity guarantees that user data is used only for purposes that the participant has explicitly consented to, and that the results of these computations are correct. From the point of view of the application, it should provide guarantees that participants will provide real untampered data. Functional requirements include continuous computations over time series, scalability in terms of both the number of participants, and the amount of data.

Trusted Execution Environments (TEEs) are an emerging technology which provides users with confidentiality and integrity guarantees that their data will remain protected. Through their attestation mechanisms they can ensure users that the result of a computation is the product of the given function. However, simply using a TEE enabled server which collects all user data is not possible due to their limitations in terms of available memory. Furthermore, TEEs themselves can suffer from side channel attacks [12] which can lead to the leakage of private data.

Keeping data decentralized is a step on the right direction but is not sufficient. Important functions of MPS systems such as task assignment which is the process of selecting suitable participants to collect data, and rich computations on this collected data, require re-centralization. The problem then lies in providing a completely decentralized framework for MPS systems that enables the functionality of typical centralized MPS systems while respecting the above requirements. The main challenge when designing this framework is achieving efficient and secure distributed computations. TEEs can provide local integrity guarantees but the integrity of the global computation is not guaranteed and needs to be verified.

3 Related work
Distributed computations lie at the core of the problem. Existing techniques which enable privacy preserving distributed computations such as Secure Multiparty Computations (SMC) [13] and gossip protocols [5] have certain drawbacks that prevent their use. More specifically, the former does not scale well with the number of parties, while the latter cannot be used for general computations. In [7], the authors use a DHT and a blockchain to build a decentralized personal data management system which ensures users can keep control of their data. Data processing however, is not considered. In [9], the authors propose a decentralized architecture for real time traffic statistics. They propose protocols in which participants can collaborate to simulate the functionality of a trusted third party. Their approach provides some interesting ideas specific to traffic analysis. Whether these can be applied to other usages needs to be investigated. In [6] the authors propose a framework for running MapReduce computations in the cloud. They use trusted Intel SGX enabled processors which handle parts of the computations. In their
the re-centralization of data by keeping all processes distributed. However, there are several research questions that remain unanswered. How will the two selection mechanisms work? How will the task verification and assignment be performed? Finally, how will our system use TEEs to perform distributed computations?

5 Evaluation plan

The proposed framework will be evaluated both in terms of privacy, as well as its efficiency in terms of computing performance. More specifically, in terms of privacy evaluation we can measure the data leakage in case of a successful attack during the computations phase. That is, the amount of private data exposed to a user who should not have access to it compared to the total amount of data involved in the computation. With this we can measure the cost-to-benefit ratio of a successful attack. The performance of the task verification scheme based on the number of malicious users involved, and their effect on the outcome of the process. To measure the efficiency of the framework we will have to evaluate the performance of the task assignment compared to an offline optimal protocol, and the efficiency of the computations based on the amount of data. The various protocols can also be compared with systems (both centralized and distributed) from the state of the art. Possible use cases that could be tested on the framework include the collection of personal health data (e.g. steps walked, average resting heart rate etc.) and its comparison with the rest of the participants, or the generation of a noise map with data collected by Ambiciti [11].

6 Conclusion

The decentralized approach we present, can potentially provide users with guarantees that their data will not be misused and will remain private. The aim of this Ph.D. thesis is to examine if a fully decentralized privacy aware solution for MPS systems is a viable solution or if certain compromises are necessary in order to achieve acceptable privacy while maintaining important functionalities.

Acknowledgments

This thesis is funded by the Inria project CityLab@Inria and is co-supervised by Nicolas Anciaux and Valérie Issarny.

References