Combining Separation of Concerns and Performance in
Distributed Software Reconfiguration

Mayverick Chardet
IMT Atlantique, Inria, LS2N, UBL
Nantes, France
maverick.chardet@Qinria.fr

Abstract

Distributed software and infrastructures continue to become
more and more complex and dynamic. Therefore, there is
a need for models assisting their management, including
their reconfiguration. Existing reconfiguration models are
either specific to a subset of reconfigurations or are unable
to provide both good performance and high separation of
concerns between the actors interacting with them. In this
article, we present our plans to extend Madeus, a non-specific
and efficient deployment model, to support reconfiguration
and to provide a good separation of concerns.

ACM Reference format:

Maverick Chardet. 2018. Combining Separation of Concerns and
Performance in Distributed Software Reconfiguration. In Proceed-
ings of Middleware’18, Rennes, France, December 2018, 2 pages.
DOI: 10.1145/nnnnnnn.nnnnnnn

1 Introduction

Distributed software refers to software composed of multi-
ple interacting components, possibly running on different
inter-connected machines. Reconfiguring distributed software
consists in modifying its current state. Reconfiguration can
be desired for many reasons: optimization of the quality
of service or cost, real-time energy management, dynamic
evolution of the services provided (e.g., dynamic update,
improvement of the functionalities of an application), etc.

Autonomic computing is a way to automatize the reconfig-
uration. A common way of conceiving autonomic computing
is to use a MAPE-K loop [7]. The system is Monitored (M),
and the information gathered is Analyzed (A) to decide if
a reconfiguration needs to be performed. If so, a reconfigu-
ration is Planned (P) and then Ezecuted (E). The models
and information used by the four phases are grouped in the
common Knowledge (K).

A reconfiguration model enables both the user to define an
assembly of components and (P) to define reconfigurations
on this assembly using a dynamic Assembly Description Lan-
guage (ADL). In this paper, we focus on the reconfiguration
model itself and on its ADL (in K). We also focus on the

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and /or a fee. Request permissions
from permissions@acm.org.

Middleware’18, Rennes, France

© 2018 ACM. 978-x-xxxx-xxxx-X/YY/MM. ..$15.00

DOI: 10.1145/nnnnnnn.nnnnnnn

reconfiguration engine (in E) which performs reconfigurations
defined in this ADL.

A reconfiguration model can be analyzed against different
properties. Its genericity refers its non-specificity to given
hardware or software. Ezpressiveness is a measure of the
variety of types of reconfiguration it handles. Its performance
refers to how fast it can perform a reconfiguration (e.g.,
by parallelizing some tasks). Scalability designates how well
performance is maintained as the size of the system increases.
Moreover, a reconfiguration model can provide more or less
abstraction, i.e., hide complexity to the user. A high level
of abstraction usually comes with good safety properties, as
the actions that the user can do are well-defined. Finally,
separation of concerns designates to what extent each actor
interacting with the system in any way only does what they
are supposed to do (i.e., what is in their area of expertise).

Most of the existing reconfiguration frameworks do not
provide at the same time (1) high abstraction preserving
performance and separation of concerns and (2) good gener-
icity and expressiveness. We aim at providing a reconfigura-
tion model allowing to fulfill these two objectives. Section 2
presents the state of the art, while Section 3 gives an overview
of our approach and the work accomplished to date. Our
plans to evaluate this work are presented in Section 4. Finally,
Section 5 concludes and presents future work.

2 State of the Art

Most of the existing frameworks supporting reconfiguration
fall in one of the following two categories. The first one
regroups those which target specific kinds of reconfigura-
tion: they show a good level of abstraction and separation
of concerns but at the cost of a low expressiveness. For ex-
ample, Amazon EC2 and Kubernetes [2] support scaling
and reboot-on-crash, CoORDAGe [5] supports addition and
removal of components. The second category comprises the
frameworks which provide low abstraction for reconfiguration,
hence allowing to perform virtually any kind of reconfigura-
tion. However, this comes at the cost of a low separation of
concerns (the reconfiguration developer must understand the
underlying software and they are responsible for performance
concerns) as well as no guarantees that the reconfiguration
is going to perform well. Examples of such frameworks are
Fractal [3], GCM [1] and FraSCAti [9].

Aeolus [6] is a reconfiguration model which is not spe-
cific to any type of reconfiguration and abstracts away the
management of the different states of a component (i.e., its
life-cycle) from the reconfiguration developer. Each compo-
nent of a distributed software is represented by a finite-state
machine, each state corresponding to a step in the life-cycle of
the component. Each state has a list of its dependencies and

Middleware'18, December 2018, Rennes, France

services it provides, hence increasing parallelism thanks to
the fine-grained dependencies. Plus, some proofs can be made
on this model, such as reachability analysis (e.g., to prove
that a reconfiguration can end). However, Aeolus (a) does not
allow parallelism within a component, (b) does not provide an
operational semantics (hence requiring human action before a
deployment can be scheduled) and (c) shows poor separation
of concerns between the developer of components and the
developer of reconfiguration (the latter must understand the
underlying software to define a reconfiguration).

Madeus [4] is a deployment model inspired by Aeolus. It
addresses points (a) and (b) in the case of deployment (that
we see as a specific case of reconfiguration). Our goal is to
extend Madeus to support reconfiguration, while preserving
(a) and (b) and addressing (c).

3 Approach and Results

Overview of the approach Our approach is to propose
a new reconfiguration model extending Madeus to support
reconfiguration. This model should (1) not be specific to any
kind of software, hardware or reconfiguration (i.e., it has
good genericity and expressiveness), (2) show good perfor-
mance by allowing to express a high level of parallelism, (3)
abstract away performance and coordination-related concerns
from the reconfiguration developer, (4) show good separation
of concerns between the developer of components and the
developer of reconfiguration, and (5) have a formal semantics
allowing to make formal proofs (such as termination).

Preliminary results A preliminary feasibility study re-
garding the extension of Madeus for reconfiguration has been
done. We enabled the developers of components to define
multiple behaviors (i.e., high-level reconfiguration actions for
the component, such as deploy or change-configuration) to
each component. This is done by assigning to each behavior a
set of transitions of the component’s life-cycle state-machine
allowing to perform the desired action. We also provided an
algorithm to generate an abstraction of the state-machine
of each component to the developer of reconfiguration, ab-
stracting away all the details that they do not need to know.
This allows a greater separation of concerns between them
and the developer of components. Finally, we modified the
description language of Madeus to handle reconfiguration
and take advantage of the behaviors.

4 Evaluation

We plan to implement a proof-of-concept for a reconfiguration
engine using our model. The evaluation will be made with
reproducibility in mind on synthetic and real-world use-cases
to demonstrate the gains in performance, abstraction, sepa-
ration of concerns and expressiveness compared to existing
solutions. We target current and expected reconfiguration
patterns. Particularly, we would like to address specific pat-
terns for future architectures such as fog computing[8]. Such
use-cases include migration of a database from a central-
ized to a decentralized instance, rolling updates with limited
resources and reconfiguration of a decentralized OpenStack?.

http://beyondtheclouds.github.io/

M. Chardet

We will compare our model to solutions including Aeolus
for its performance, Ansible for its expressiveness and wide
adoption by the industry, along with platform or technology-
specific tools such as AWS CloudFormation or Kubernetes
for their good abstraction and separation of concerns.

To evaluate performance, we will compare the run-time
of the same reconfiguration performed by our engine and by
the other solutions on the experimental platform Grid’50002.
The effect on performance of parameters such as the size of
the cluster and the locality of a VM image that need to be
downloaded will be evaluated as well. To evaluate separation
of concerns, the metrics will capture the knowledge that each
actor needs to have about the system outside of their area of
expertise (e.g., number of references to internal implementa-
tion elements in the definition of the reconfiguration by the
developer of reconfiguration). Finally, the number of lines
of code, weighed by their complexity, that a developer must
write to express a reconfiguration will be considered as an
indicator of the level of abstraction of the model.

5 Conclusion

In this article, we have presented our approach to developing
a new reconfiguration model for distributed software that
combines efficiency and good separation of concerns. We
have also planned how to evaluate this model in terms of
performance, separation of concerns and level of abstraction.

In addition to formalizing the model, future work includes
providing high-level abstractions when it does not hurt perfor-
mance (e.g., resource management, hierarchical components).
We also plan to study the possibility of decentralizing the re-
configuration engine to increase scalability and exploring the
topic of concurrent reconfigurations to increase performance.

References

[1] Frangoise Baude, Denis Caromel, Cédric Dalmasso, Marco Dane-
lutto, Vladimir Getov, Ludovic Henrio, and Christian Pérez.
2009. GCM: a grid extension to Fractal for autonomous dis-
tributed components. annals of telecommunications - annales
des télécommunications 64, 1-2 (feb 2009), 5-24.

[2] Eric A. Brewer. 2015. Kubernetes and the Path to Cloud Na-
tive. In Proceedings of the Sizth ACM Symposium on Cloud
Computing (SoCC ’15). ACM, New York, NY, USA, 167-167.

[3] Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien

Quéma, and Jean-Bernard Stefani. 2006. The FRACTAL com-

ponent model and its support in Java. Software: Practice and

Ezperience 36, 11-12 (sep 2006), 1257-1284.

Maverick Chardet, Héléne Coullon, Dimitri Pertin, and Christian

Pérez. 2018. Madeus: A formal deployment model. In 4PAD

2018 - 5th International Symposium on Formal Approaches

to Parallel and Distributed Systems (hosted at HPCS 2018).

Orléans, France, 1-8.

[5] Loic Cudennec. 2009. CoRDAGe : Un service générique de co-

déploiement et redéploiement d’applications sur grilles. Ph.D.

Dissertation.

Roberto Di Cosmo, Jacopo Mauro, Stefano Zacchiroli, and Gian-

luigi Zavattaro. 2014. Aeolus: a Component Model for the Cloud.

Information and Computation (2014), 100-121.

[7] J.O. Kephart and D.M. Chess. 2003. The vision of autonomic
computing. Computer 36, 1 (jan 2003), 41-50.

[8] Redowan Mahmud and Rajkumar Buyya. 2016. Fog Computing:

A Taxonomy, Survey and Future Directions. (nov 2016).

Lionel Seinturier, Philippe Merle, Damien Fournier, Nicolas Dolet,

Valerio Schiavoni, and Jean-Bernard Stefani. 2009. Reconfigurable

SCA Applications with the FraSCAti Platform. In 2009 IEEE

International Conference on Services Computing. IEEE, 268—

275.

[4

[6

[9

2https:/ /www.grid5000.fr/

http://beyondtheclouds.github.io/
https://www.grid5000.fr/

	Abstract
	1 Introduction
	2 State of the Art
	3 Approach and Results
	4 Evaluation
	5 Conclusion
	References

